A Nd:YAG laser with 7-ns pulses and pulse energies up to 10 mJ is used to induce an optical breakdown in the front surface of an aluminum rod, covered by a water layer. The rod is part of a ballistic pendulum. In this way we study the propulsion effects by means of coupling coefficient and energy-conversion efficiency with respect to different confining geometries, volumes of water applied to the front surface of the rod, and the distance of this surface from the laser-beam focus.Holes with different dimensions are drilled on the target surface and filled with different volumes of water to examine the influence of the confinement by the liquid (a free boundary) and a solidsurface geometry on laser ablation effects. The rod movement and the water ejection after laser ablation are acquired by a high-speed camera with 10k frames per second. The results show that the confinement by cavity substantially increases the propulsion effects by shaping the ejected flow of the liquid, while the cavitation bubble, induced inside the water layer plays a significant role in propulsion efficiency. From the presented results, it follows that the laser-propelled rod carries below 0.5% of the total mechanical energy after propulsion, while the rest of this energy represents the kinetic energy of the ablated water. As expected, moving the target surface away from the focal position decreases the ablative-propulsion efficiency. When the focus is moved inside the solid target the decrease occurs due to lower conversion of the pulse energy into the energy of the cavitation bubble. If the focus is moved from the surface outward, the bubble moves towards the liquid-gas interface and it is not able to efficiently eject all the liquid from the target.