Photoelectron imaging results are presented for I(-)[middle dot]X cluster anions (X = CO(2), C(4)H(5)N [pyrrole], (CH(3))(2)CO, CH(3)NO(2)). The available detachment channels are labeled according to the neutral iodine atom states produced (channel I ≡ (2)P(3/2) and channel II ≡ (2)P(1/2)). At photon energies in the vicinity of the channel II threshold these data are compared to previously reported results for I(-)[middle dot]X (X = CH(3)CN, CH(3)Cl, CH(3)Br, and H(2)O). In particular, these results show a strong connection between the dipole moment of the solvent molecule and the behavior of the channel I photoelectron angular distributions in this region, which is consistent with an electronic autodetachment process. The evolution of the channel II:channel I branching ratios in this excitation regime supports this contention.