Abstract.A reversible addition-fragmentation chain transfer (RAFT) agent with carbazole as Z-group was immobilized on the surfaces of the cross-linked poly (4-vinylbenzyl chloride-co-styrene) (PVBCS) nanospheres with a diameter of about 70 nm by the reaction of benzyl chloride groups in the PVBCS between carbazole and carbon sulfide. Then surface RAFT polymerization of 4-vinylpyridine (4VP) was used to modify the nanospheres to produce a well-defined and covalently tethered P4VP shell. By surface activation in a PdCl2 solution and then reduction by hydrazine hydrate (N2H4·H2O), the P4VP composite shells were obtained containing densely palladium metal nanoparticles. The chemical composition of the nanosphere surfaces at various stages of the surface modification was characterized by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) was used to characterize the morphology of the hybrid nanospheres. The Pd/P4VP shell nanospheres were also applied to the catalytic reaction and proved to be efficient and reusable for the Heck reaction.