We report on a self-organized process initiated on a potassium-tungsten-tellurite glass surface under repetitive femtosecond laser irradiation in a regime where cumulative effects lead to a localized melting. Specifically, we show that self-organized periodic patterns consisting of parallel nanoplanes perpendicular to the laser polarization are forming and extending beyond the zone under direct laser exposure. Examination of the modified regions revealed a phase change from a glassy tellurium-oxide to a crystalline elemental tellurium. In addition, we observe that this selforganization process, associated with elemental redistribution and deoxygenation, is triggered by the optical-field strength. We suggest that early self-organized nanostructures formed by a local-field enhancement is subsequently reinforced by a metallization event in an open-air atmosphere.