Lithium-ion-encapsulated fullerene (Li(+) @C60 ) exhibits greatly enhanced reactivity in photoinduced electron-transfer reduction with electron donors compared with pristine C60 . The enhanced reactivity of Li(+) @C60 results from the more positive one-electron reduction potential of Li(+) @C60 (+0.14 V versus a standard calomel electrode (SCE)) than that of C60 (-0.43 V versus SCE), whereas the reorganization energy of electron transfer of Li(+) @C60 (1.01 eV) becomes larger than that of C60 (0.73 eV) because of the change in electrostatic interactions of encapsulated Li(+) upon electron transfer. Li(+) @C60 can form strong supramolecular complexes with various anionic electron donors through electrostatic interactions. Li(+) @C60 can also form strong supramolecular π complexes with various electron donors, such as cyclic porphyrin dimers, corannulene, and crown ether fused monopyrrolotetrathiafulvalenes. Photoinduced electron transfer from electron donors to Li(+) @C60 afforded long-lived charge-separated states of supramolecular complexes between electron donors and Li(+) @C60 . A photoelectrochemical solar cell composed of supramolecular nanoclusters of Li(+) @C60 and zinc sulfonated meso-tetraphenylporphyrin exhibits significant enhancement in the photoelectrochemical performance than that of the reference system containing only a single component.