The emerging field of carbon dots (CDs), a type of carbon nanostructure that has gained significant attention due to its unique properties and potential applications. CDs possess remarkable attributes, including photoluminescence, electrochemical potential, compatibility with living organisms, solubility in water, chemical stability, and versatile surface properties. The chemical structure, particle size, and surface functionalities of CDs all have an impact on their photoluminescent properties, which are the focus of this review. The photoluminescence mechanism in CDs is discussed, highlighting their amorphous structure, and comparing them to graphene quantum dots. The paper delves into the application of CDs in artificial photosynthesis, which enhances crop growth by improving the photo-synthesis process. CDs increase sunlight and carbon dioxide absorption rates by interacting with plant leaves, potentially leading to substantial crop yield improvements. The advantages of CDs in artificial photosynthesis are explored, including their modifiable absorption characteristics across the ultraviolet to near-infrared spectrum. The paper acknowledges challenges in CD production, such as size control and aggregation, while emphasizing their potential in various fields, including sensing, bioimaging, energy devices, and catalysis. CDs' unique optical properties and versatile applications suggest a promising future for these nanostructures in numerous scientific and technological domains.