Organic solar cells (OSCs) have unique advantages of low-cost solution processing, light weight, flexibility, and semitransparency, which is a promising photovoltaic technology. The intermixed phase plays a key role in determining the power conversion efficiencies (PCE) of OSCs. The intermixed phase is an amorphous region, where the donor and acceptor mix at the molecular level.Great efforts have been devoted to optimize the content and the composition of the intermixed phase. This perspective focuses on the functions of intermixed phase and elaborates the relationship between intermixed phase behavior and photophysical process, in particular, the exciton dissociation and charge transport. Then the characterization methods, including quantitative and qualitative characterizations, for the content and composition of intermixed phases are introduced. Meanwhile, this review also introduces the strategies to control the intermixed phase behavior, such as adjusting the miscibility between donor and acceptor, changing the ratio of donor to acceptor, regulating the crystallinity and so on. Moreover, representative examples are given and discussed to understand the key parameters on tuning the intermixed phase behavior. Finally, a future controlling and development of intermixed phase behavior is briefly outlooked, which may help to achieve high PCE of OSCs.