Nanotechnology has led to a profound paradigm shift after the developments in recent years and after being recognised as one of the most important areas of impending technology. Nanomaterials are the basis of newly emerging nanotechnologies for various applications in sensors, photonics, drug delivery, proteomics, biomolecular electronics, and homeland security. Luminescent nanomaterials have attracted great interest worldwide because of their unusual structural, optical and electronic properties as well as efforts to prepare miniaturised devices. By understanding and manipulating these properties, the performance of the resulting optical structure can be tailored for desired end-use applications. Luminescence nanoparticles have tremendous potential in revolutionizing many interesting applications in today’s emerging cutting-edge optical technology such as solid state lighting. Solid-state lighting (SSL) relies on the conversion of electricity to visible white light using solid materials. SSL using any of the materials (inorganic, organic, or hybrid) has the potential for unprecedented efficiencies. The development of novel mercury-free inexpensive nanomaterials, that convert longer wavelength UV to blue light eventually into white-light and are eco-friendly with improved luminous efficacy, energy-saving, long-lifetime, and low-power consumption characteristics, is discussed. In this review, we present a general description of EL related to nanomaterials as the emitter and outlines basic research requirements that could enable solid-state lighting to achieve its potential. Continuing progress in the synthesis and purification of SSL materials are beginning to enable separation of extrinsic and intrinsic phenomena and improve device performance. This review mainly focuses on the basic mechanism, classification, synthesis and characterization of luminescent nanomaterials. The review also covers recent advances in lanthanide-based nanomaterials and photoluminescent nanofibers formed by combining electrospun polymeric nanofibers and quantum dots (QDs) for lighting applications. In spite of the remarkable scientific progress in preparation processes and applications of nanomaterials, they are still not widely used by the industry. Finally, we conclude with a look at the future challenges and prospects of the development of electroluminescence (EL) devices for lighting.Contents of Paper