We present a full triple-coincidence analysis of photon-pair states generated by spontaneous parametric down-conversion. By increasing the coherence time of the source with the help of an intracavity setup, our measurements are not spoiled by detection time jitter. Signal-idler, but also thermal signal-signal, correlations are clearly resolved in this regime. Via introduction of an artificial coincidence window, we discuss in detail the transition to the previously studied cases where typically no single-arm correlation is observed. We investigate the heralded antibunching characteristics to show that in our system further studies of continuously generated photon states, possibly higher-photon-number entangled states, can be performed with respect to their (non)applicability in quantum information tasks.