Cooperative effects describe atomic ensembles with exchange of photonic excitations, such as dipole-dipole interactions. As a particular example, superradiance arises from spontaneous emission when this exchange leads to constructive interference of the emitted photons. Here, we introduce an integrated method for studying cooperative radiation in many-body systems. This method, which allows to study extended systems with arbitrarily large number of particles, can be formulated by an effective, nonlinear, two-atom master equation that describes the dynamics using a closed form which treats single-and many-body terms on an equal footing. We apply this method to a homogeneous gas of initially inverted two-level atoms, and demonstrate the appearance of both superradiance and subradiance, identifying a many-body coherence term as the source of these cooperative effects. We describe the many-body induced broadening -which is analytically found to scale with the optical depth of the system -and light shifts, and distinguish spontaneous effects from induced ones. In addition, we theoretically predict the time-dependence of subradiance, and the phase change of the radiated field during the cooperative decay.