In this paper, a photonic-enabled image rejection mixer (IRM) that features an ultrawideband self-interference cancellation (SIC) function and a compact configuration is proposed. The parameter tuning of SIC is realized in an optical domain, which avoids the use of electrically tuned devices with limited bandwidth and precision, so that high-precision parameter matching can be realized in the optical domain to realize deep and ultrawideband SIC. The key point of image rejection (IR) is to construct a pair of orthogonal local oscillation (LO) signals through DC-bias-induced phase shift. This not only avoids a high-frequency electrical 90-degree hybrid coupler (HC) applied in the traditional Hartley structure, but also compensates the phase deviation in the electrical intermediate frequency (IF) 90-degree HC flexibly, ensuring wideband and deep IR operation. The simulation results show that the proposed IRM can achieve ultrawideband SIC and IR with the simultaneous high-efficiency recovery of useful signals. They also verify that the scheme has good resistance to strong interference, and can cope with the phase imbalance of the IF 90-degree electrical HC, ensuring the good performance of the system, which has a wide application prospect in various in-band full-duplex (IBFD) systems.