Highly selective and reconfigurable microwave filters are of great importance in radiofrequency signal processing. Microwave photonic (MWP) filters are of particular interest, as they offer flexible reconfiguration and an order of magnitude higher frequency tuning range than electronic filters. However, all MWP filters to date have been limited by trade-offs between key parameters such as tuning range, resolution, and suppression. This problem is exacerbated in the case of integrated MWP filters, blocking the path to compact, high performance filters. Here we show the first chip-based MWP band-stop filter with ultra-high suppression, high resolution in the MHz range, and 0-30 GHz frequency tuning. This record performance was achieved using an ultra-low Brillouin gain from a compact photonic chip and a novel approach of optical resonance-assisted RF signal cancellation. The results point to new ways of creating energy-efficient and reconfigurable integrated MWP signal processors for wireless communications and defence applications.The explosive growth in mobile communications demands radio-frequency (RF) technologies with exceptional spectral efficiency such as cognitive radios, which can adapt their frequencies to exploit the available spectrum in real-time [1,2]. Such frequency-agile systems will benefit hugely from RF filters that can be tuned over many gigahertz whilst keeping high MHz-scale resolution and high selectivity to prevent severe interference due to spectrumsharing. While this is difficult to achieve with all-electronic filters [3][4][5][6][7], integrated microwave photonic (IMWP) filters [8] can readily achieve multi-gigahertz tuning range without significant degradation in their frequency response. However, these filters typically exhibit limited resolution (GHz instead of MHz linewidths) and are plagued by trade-offs between key parameters, such as between the frequency tuning range and the resolution for multi-tap filters [9][10][11][12][13]; or between the peak rejection and the resolution for resonator-based filters [14][15][16][17][18].Stimulated Brillouin scattering (SBS) [19][20][21][22] offers a route to MHz-resolution IMWP filters. Although SBS has been widely studied in optical fibers, recently there has been a growing interest in harnessing SBS in nanophotonic waveguides [22][23][24][25][26][27]. The ability to control the coherent interaction of photons and acoustic phonons in chip-sized devices (as opposed to in optical fibers many kilometres long) promises not only fascinating new physical insights, but also opens the path to realising key technologies on-chip including slow light [28,29]; narrow linewidth lasers [30]; optical frequency combs [31,32]; RF signal processing [33][34][35] and filtering [36][37][38][39][40]. In particular, SBS filters can exhibit linewidths of the order of 10-100 MHz. Such a high resolution is unmatched by most on-chip devices because it requires extremely low material losses and impractically-large devices [41].Although IMWP filters exploiting SBS on ch...