This version is available at https://strathprints.strath.ac.uk/54819/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Abstract-Simultaneous generation of microwave and millimeter-wave (mm-wave) signals is demonstrated experimentally using a 1310-nm Quantum Dot (QD) Distributed-Feedback (DFB) Laser. The reported technique is based on the period-1 dynamics and dualmode lasing induced in the laser device under external optical injection. Tunability of the generated microwave and mm-wave signals is obtained. Furthermore, abrupt switching between different frequency regimes in the microwave and mm-wave bands is also observed. These novel frequency switching mechanisms added to the tuning capability of the system offers exciting prospects for novel uses of QD lasers in ultra-high frequency applications. Our approach also benefits from a simple experimental configuration using basic optical fibre components making our technique totally compatible with optical telecommunication networks.