Photonic molecules (PMs) are artificial nanoscale photonic structures that play important roles in the fundamental optics field. PM quantum optics has recently become a promising research field, because it provides novel quantum optical phenomena including Rabi oscillation, the Stark effect, the Purcell effect, the photon blockade effect, bound states in the continuum, electromagnetically induced transparency, and Autler–Townes splitting. With the constant improvements in theoretical PM quantum optics research, many newly integrated photonic devices have been proposed and experimentally demonstrated, showing major potential for fabrication of next-generation, high-performance integrated photonic chips. This review provides a universal overview of the rapidly developing PM quantum optics field, including fundamental mechanisms, realization frameworks, novel quantum optical phenomena, and applications in newly developed photonic devices while also giving a general summary of the remaining challenges and proposing possible development directions for PM quantum optics.