Photonic Neuromorphic Pattern Recognition with a Spiking DFB‐SA Laser Subject to Incoherent Optical Injection
Yuna Zhang,
Shuiying Xiang,
Chengyang Yu
et al.
Abstract:Photonic neuromorphic computing is a competitive paradigm to overcome the bottleneck of von Neumann architectures. Incoherent and coherent synaptic networks are two popular schemes realizing photonic weighting functions. Previous works have proved the distributed feedback (DFB) laser with an intracavity saturable absorber (DFB‐SA) can behavior like a spiking neuron. However, the compatibility with the incoherent synaptic architecture has not yet been demonstrated. Here the neuron‐like dynamics of a DFB‐SA lase… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.