Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Encouraged by the emerging disaggregation trend in optical transport networks, operators are willing to offer flexible and future-proof optical spectrum as a service (OSaaS) instead of classical capacity services. To define this modern service in commercial offerings, a commonly accepted, reliable, and easy-to-use service characterization method has to be developed. This is explicitly challenging in terrestrial brown-field, black-box scenarios, where open line system (OLS) data are unavailable or outdated to employ calculation or simulation-based methods. The objective of this work is to identify a characterization method that reliably captures wavelength-dependent performance variations, possible filtering penalties, and the operation regime of the optical spectrum services. First, all OSaaS configuration options in the OLS are systemized into four primary configurations, and their operational aspects are discussed. Then, two of the most used OSaaS configurations are tested in the lab and in a live network environment, providing links up to 5738 km in length. Generalized signal-to-noise ratio profiles are captured with a channel probing method, using a single-probe sweep and multiple simultaneous probes. Then, the accuracy and suitability of the amplified spontaneous emission loaded optical signal-to-noise ratio profile is tested in a lab environment. Finally, we discuss the required time and hardware resources to characterize the service and bring out the pros and cons for each investigated profile. In conclusion, we propose a single-probe sweep as a reliable and easy-to-use method to characterize the OSaaS in terrestrial brown-field networks.
Encouraged by the emerging disaggregation trend in optical transport networks, operators are willing to offer flexible and future-proof optical spectrum as a service (OSaaS) instead of classical capacity services. To define this modern service in commercial offerings, a commonly accepted, reliable, and easy-to-use service characterization method has to be developed. This is explicitly challenging in terrestrial brown-field, black-box scenarios, where open line system (OLS) data are unavailable or outdated to employ calculation or simulation-based methods. The objective of this work is to identify a characterization method that reliably captures wavelength-dependent performance variations, possible filtering penalties, and the operation regime of the optical spectrum services. First, all OSaaS configuration options in the OLS are systemized into four primary configurations, and their operational aspects are discussed. Then, two of the most used OSaaS configurations are tested in the lab and in a live network environment, providing links up to 5738 km in length. Generalized signal-to-noise ratio profiles are captured with a channel probing method, using a single-probe sweep and multiple simultaneous probes. Then, the accuracy and suitability of the amplified spontaneous emission loaded optical signal-to-noise ratio profile is tested in a lab environment. Finally, we discuss the required time and hardware resources to characterize the service and bring out the pros and cons for each investigated profile. In conclusion, we propose a single-probe sweep as a reliable and easy-to-use method to characterize the OSaaS in terrestrial brown-field networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.