A new process for coating a mesoporous silica gel with a mixture of the grafting reagents para-aminophenyltrimethoxysilane and phenyltrimethoxysilane is thoroughly analyzed. The dilution of para-aminophenylsilane with phenylsilane at different ratios allows the density of the functional amino groups present on the silica surface to be controlled, while keeping constant the overall number of grafts. Furthermore, the choice of a rigid linker prevents undesirable interactions between the active function and the inorganic support that could alter the function reactivity. This simple and new method, which results in the improvement of the dispersion of a functionality in a one-pot synthesis, could be particularly interesting in the field of supported catalysis and molecular recognition. The dispersion of the functional groups of the synthesized hybrid solids is investigated using a pyrene derivative covalently linked to the free amino groups of the para-aminophenylsilanes by analyzing the excimer and monomer fluorescence properties of the probe.