As intelligent materials responsive to light, photomechanical hydrogels not only possess high‐water content, excellent softness and biocompatibility, but also can accomplish various mechanical motions upon spatiotemporal stimulation of external light, which exhibit great potential in biomedical and underwater bionic fields. Molecular photoswitches have been used broadly in preparation of photomechanical hydrogels owing to their high photosensitivity and reversible molecular structure transformations induced by light. Herein, the current progress of photomechanical hydrogels based on typical molecular photoswitches such as spiropyran, azobenzene, and hexaarylbiimidazole (HABI) are introduced. Especially, as a promising building unit for photomechanical hydrogels, HABI has been highlighted due to the unique molecular structures and reversible photoswitching capability. HABI‐derived polymer hydrogels demonstrate flexible mechanical behaviors upon localized light irradiation. The characteristics and challenges of photomechanical hydrogels based on molecular photoswitches are also prospected.