Estudou-se a desinfecção de águas de abastecimento por fotocatálise heterogênea usando um reator de fluxo em um sistema composto por uma placa de vidro com TiO 2 P 25 (Degussa) imobilizado e luz solar como fonte de radiação. Foram utilizados dois modos de operação do reator: passagem única e recirculação. Os experimentos foram conduzidos utilizando inicialmente uma água preparada em laboratório e posteriormente água coletada em poços e lagos de uma região próxima à Campinas, SP. Estudou-se a influência de fatores, tais como, o modo de operação do reator, a cor e turbidez da água, os quais influenciam significativamente na eficiência fotocatalítica de descontaminação e, portanto, na viabilidade da aplicação do processo. Em dias ensolarados, alcançou-se uma redução na carga bacteriológica de cerca de 100% do valor inicial de Escherichia coli (2 × 10 3 NMP per 100 mL) para soluções de água sintética, e, 80% do valor inicial de Escherichia coli (16.6 to 22.2 × 10 3 MPN per 100 mL) para água in natura, através da fotocatálise heterogênea usando TiO 2 .TiO 2 -assisted heterogeneous photocatalysis and photolysis were evaluated for the disinfection of water samples using a glass reactor with immobilized TiO 2 (catalyst), solar light and E. coli as an indicator microorganism of the efficiency of disinfection. Parameters such as color and turbidity of the water, level of coliform bacteria (by the Colilert ® method), inclination angle of the solar reactor, solar light intensity, flow rate and retention time were controlled during the experiments. Two different operational modes were used for the solar reactor: single pass mode and recirculation mode. First, synthetic water was used in the disinfection tests as a model system; second, tests were conducted using natural samples specifically groundwater collected from a lake and a well. In bacterial suspensions in synthetic water in the absence of color and turbidity, heterogeneous photocatalysis was responsible for the reduction of approximately 100% of the initial concentration of E. coli. Only a 56.5% reduction was obtained by photolysis during the same solution recirculation time, which indicated a better efficiency using the catalyst. From the natural samples, total inactivation was not achieved in the studied cases. However, photocatalysis using TiO 2 /solar light was shown to be quantitatively efficient in the destruction of the total coliforms in water, reaching values up to around 80% inactivation in natural waters with initial levels of total coliforms ranging from 16.6 to 22.2×10 3 MPN per 100 mL.