Three iridium photosensitizers, [Ir(dCF 3 ppy) 2 (N−N)] + , where N−N is 1,4,5,8-tetraazaphenanthrene (TAP), pyrazino[2,3-a]phenazine (pzph), or benzo[a]pyrazino[2,3-h]phenazine (bpph) and dCF 3 ppy is 2-(3,5-bis(trifluoromethylphenyl)pyridine), were found to be remarkably strong photo-oxidants with enhanced light absorption in the visible region. In particular, judicious ligand design provided access to Ir-bpph, with a molar absorption coefficient, ε = 9800 M −1 cm −1 , at 450 nm and an excited-state reduction potential, E(Ir + * /0 ) = 1.76 V vs NHE. These complexes were successful in performing light-driven charge separation and energy storage, where all complexes photo-oxidized seven different electron donors with rate constants (0.089−3.06) × 10 10 M −1 s −1 . A Marcus analysis provided a total reorganization energy of 0.7 ± 0.1 eV for excited-state electron transfer.