The transport properties of B-doped single-walled carbon nanotubes (SWNTs) are studied from both experimental and theoretical standpoints. Experimentally, it is found that the semiconducting behavior of SWNTs is drastically changed after B-doping, and the unusual abrupt current drops are observed at low temperatures, which may imply the possibility of superconducting transition in B-doped SWNTs. Using the density-functional tight-binding calculation, it is observed that B-doping induces the presence of density of state peaks near the Fermi level which shifts toward the valence band region, showing a clear charge-transfer characteristic, which agrees well with the experimental observations.