The rhodophytes Mastocarpus stellatus and Chondrus crispus occupy the lower intertidal zone of rocky shores along North Atlantic coastlines, with C. crispus generally occurring slightly deeper. Consequently, M. stellatus is exposed to more variable environmental conditions, related to a generally higher stress tolerance of this species. In order to extend our understanding of seasonal modulation of stress tolerance, we subjected local populations of M. stellatus and C. crispus from Helgoland, North Sea, to short-term high-light stress experiments over the course of a year (October 2011, March, May and August 2012). Biochemical analyses (pigments, antioxidants, total lipids, fatty acid compositions) allowed to reveal mechanisms behind modulated high-light tolerances. Overall, C. crispus was particularly more susceptible to high-light at higher water temperatures (October 2011 and August 2012). Furthermore, speciesspecific differences in antioxidants, total lipid levels and the shorter-chain/longer-chain fatty acid ratio (C14 + C16/ C18 + C20) were detected, which may enhance the tolerance to high-light and other abiotic stress factors in M. stellatus, so that this species is more competitive in the highly variable upper intertidal zone compared to C. crispus. Since the high-light tolerance in C. crispus seemed to be affected by water temperature, interactions between both species may be impacted in the future by rising mean annual sea surface temperature around the island of Helgoland.