This paper tells the history of two brothers, almost a generation apart in age, who met again, after having followed different academic paths, to introduce biophysical research in photosynthesis at the University of Padova. The development of two research groups, one in the Chemistry Department, the other in the Biology Department led to a comprehensive interdisciplinary group across academic barriers. The group of Giovanni Giacometti developed in Physical Chemistry, during the years before his retirement, with some roots which can be traced to the famous Linus Pauling school of the mid 1950s, and made possible, by the work of many students (especially Donatella Carbonera and Marilena Di Valentin) and of an older associate (Giancarlo Agostini). The group participated quite actively with a number of European and American laboratories in the application of physical techniques, especially Electron Spin Resonance (EPR) associated with Optical Spectroscopy (Optically Detected Magnetic Resonance; ODMR), and contributed to the development of the understanding of the structure-function relationships in photosynthetic membrane complexes, stimulated by the determination of the X-ray structure of the purple photosynthetic reaction center in the mid 1980s ( J. Deisenhofer, H. Michel, R. Huber and others). The younger brother of Giovanni, Giorgio Mario Giacometti, came to Padova after obtaining biochemical knowledge from the Rossi-Fanelli school in Rome, where Jeffries Wyman, Eraldo Antonini and Maurizio Brunori were the world masters of hemoglobin research. In Padova, together with a group of young scientists (at first Roberto Bassi and Roberto Barbato, now leaders of their own groups in Verona and in Alessandria respectively, followed soon by brilliant coworkers such as Fernanda Rigoni, Elisabetta Bergantino and more recently Ildikò Szabò and Paola Costantini), Giorgio approached more biochemical themes of oxygenic photosynthesis, such as purification and characterization of antenna chlorophyll-protein complexes, Photosystem II (PS II) particles and subunits, having always in mind structural and molecular problems at the level of the largest integrated particles, which are more difficult to investigate in detail by the spectroscopic techniques.