Net photosynthetic rates (P n ) of easy and difficult-to-acclimatize (EK 11-1) sea oats genotypes were examined under the following culture conditions: (1) photoautotrophic [sugar-free medium, high photosynthetic photon flux (PPF), high vessel ventilation rates and CO 2 enrichment, (PA)]; (2) modified photomixotrophic [sugarcontaining medium diluted with sugar-free medium over time, high PPF, and high vessel ventilation rates (PM)]; (3) modified photomixotrophic enriched [same as PM with CO 2 enrichment, (PME)]; or (4) conventional photomixotrophic [sugar-containing medium, low PPF, and low vessel ventilation rates (control)]. Regardless of genotype, plantlets cultured under PA conditions died within 2 wk, whereas under PM and PME conditions, plantlets increased their P n . After 6 wk, P n per gram dry weight was 1.7 times greater in EK 16-3 than EK 11-1 plantlets cultured under PME conditions. In vitro-produced leaves of EK 16-3 plantlets were elongated with expanded blades, whereas EK 11-1 produced short leaves without expanded blades, especially under control conditions. After in vitro culture, EK 16-3 PME plantlets exhibited the highest dry weights among treatments. EK 16-3 PME and EK 16-3 PM had similarly high survivability, shoot and root dry weights and leaf lengths ex vitro compared to EK 16-3 control and EK 11-1 PM and PME plantlets. Ex vitro growth, survivability and P n per leaf area of either genotype were not affected by CO 2 enrichment under modified photomixotrophic conditions. These results suggest that growth and survivability of sea oats genotypes with different acclimatization capacities can be enhanced by optimizing culture conditions.