The photoprotective role of the universal violaxanthin cycle that interconverts violaxanthin (V), antheraxanthin (A), and zeaxanthin (Z) is well established, but functions of the analogous conversions of lutein-5,6-epoxide (Lx) and lutein (L) in the selectively occurring Lx cycle are still unclear. We investigated carotenoid pools in Lx-rich leaves of avocado (Persea americana) during sun or shade acclimation at different developmental stages. During sun exposure of mature shade leaves, an unusual decrease in L preceded the deepoxidation of Lx to L and of V to A+Z. In addition to deepoxidation, de novo synthesis increased the L and A+Z pools. Epoxidation of L was exceptionally slow, requiring about 40 d in the shade to restore the Lx pool, and residual A+Z usually persisted overnight. In young shade leaves, the Lx cycle was reversed initially, with Lx accumulating in the sun and declining in the shade. De novo synthesis of xanthophylls did not affect a-and b-carotene pools on the first day, but during long-term acclimation a-carotene pools changed noticeably. Nonetheless, the total change in a-and b-branch carotenoid pools was equal. We discuss the implications for regulation of metabolic flux through the a-and b-branches of carotenoid biosynthesis and potential roles for L in photoprotection and Lx in energy transfer to photosystem II and explore physiological roles of both xanthophyll cycles as determinants of photosystem II efficiency.It has long been recognized that photosynthesis in plants must resolve two conflicting requirements, the need to ramp up maximum light-harvesting efficiency in dim light and to wind back to lower efficiency when light is in excess, in order to maintain high rates of growth and productivity in varying light environments (Björkman, 1981;Pearcy, 1990). A wealth of research has established that plants adjust through an array of morphological and molecular events that confer photoprotection, mitigate and repair photoinactivation of PSII, and facilitate acclimation of the photosynthetic apparatus over different time scales in response to variable light regimes in wild plants, crops, and algae (Osmond et al., 1999; DemmigAdams et al., 2006). In the context of the light reactions, low light acclimation optimizes light harvesting and energy transfer to the photosystems, particularly PSII, via enlarged functional antennae, accumulation of accessory light-harvesting pigments, and down-regulation of unnecessary competing photoprotective processes.High light acclimation involves increased photoprotection and photorepair, downsized antennae, fewer photosystems, and sometimes changes in the PSI to PSII stoichiometry (Osmond et al., 1999;Fö rster et al., 2005). Along with their function in energy transfer to the photosynthetic reaction centers as accessory pigments to chlorophylls, the xanthophyll pigments violaxanthin (V), antheraxanthin (A), and zeaxanthin (Z) play a central role in these transformations of the photosynthetic apparatus, especially in thermal energy dissipation and detoxificat...