The link between anthropogenic emissions of carbon dioxide, increasing atmospheric CO2 levels, and concomitantly increasing global temperatures is established and accepted. The use of aqueous ammonia, to capture CO2 and produce an inexpensive nitrogen fertilizer, ammonium bicarbonate (ABC), is believed to be a feasible approach to CO2 sequestration. Due to the varying concentrations of reactants and varying reaction conditions, different ammonia-carbon compounds may be produced. ABC is the ideal product for maximizing NH3 utilization in CO2 capture; therefore, identification and quantification of ABC in the reaction products is mandatory. Various analytical techniques were used to distinguish and quantify the ABC. Fourier transform infrared spectroscopy can only be used to distinguish ammonium carbamate, and. X-ray diffraction can be used to qualitatively distinguish ABC from the other possible products of the CO2 capture reaction. Carbon-hydrogen-nitrogen elemental analysis and near-infrared (NIR) spectroscopy were used to quantify ABC, with both techniques giving +/-5% agreement for ABC concentrations for 8 of 13 samples from a bench-scale aqueous ammonia CO2 scrubbing system. An additional 3 of the 13 samples were within +/-12%. Results indicate that NIR will be an ideal tool for real-time, on-line measurements of ABC in a full-scale aqueous ammonia CO2 scrubber. The ABC in 11 samples from the bench-scale scrubber at Western Kentucky University was determined by these techniques and assessed to have very good quality as a fertilizer in accordance with GB-3559-92, the Agricultural Ammonium Bicarbonate National Standard of China.