In anticipation of the growing demand for energy efficiency, research is underway on the advancement of the next generation of bio-inspired adaptive systems for multi-stimuli-responsive building envelopes. At this point, it is vital to perceive how materials are altered by various stimuli. To address this challenge, I conceptualise the following question: how can hydro-actuated systems become multi-responsive systems through combining bio-responsive mechanisms? To begin to imagine these actuators, I take inspiration from bio-inspired mechanisms to chart viable avenues/principles that can lead to scalable applications. Hydro-actuated facades can help decrease energy consumption in buildings because of the advantage of using bio-inspired materials and smart mechanisms derived from natural phenomena that occur on the scale of plants or animals. Most hydro-actuated facades are restricted in terms of their responses to a single stimulus, which makes them ineffective for building envelopes due to their inability to respond to other stimuli. The main aim of this study is to define challenges concerning hydro-actuated facades and develop principles to create a multi-stimuli-responsive system that senses and actuates passively. In this regard, by introducing a strategy of combining natural mechanisms in the context of architectural envelopes, this paper presents extra insight into the connection between building facades and environmental mechanisms.