It is important to study nanofluids to understand their extraordinary thermal properties and how the size, concentration and agglomeration of the nanoparticles affect those properties. Photopyroelectric (PPE) technique has been well established in the use of non-destructive measurement of thermal diffusivity and thermal effusivity, by using polyvinylidene fluoride (PVDF) films as sensitive pyroelectric sensors in thermally thick conditions instead of using very thick ceramic sensors. There have been two proposed practical configurations for the PPE technique, the back and the front PPE configurations, to obtain both the thermal diffusivity and effusivity, which are suitable thermal parameters of materials. This PPE technique involves the measurement of thermal waves in the sample due to absorption of optical radiation, by placing a pyroelectric sensor in thermal contact with the sample. This chapter provides a review of the back and the front PPE configurations to determine the thermal diffusivity and effusivity of nanofluids, sample preparation techniques using high-amplitude ultrasonic dispersion and data analysis for metal oxide-based nanofluid materials.