Poly-o-chloroaniline (POCA) and Mn2O3/β-MnO2/POCA porous nanocomposite are both synthesized using oxidative polymerization, with K2S2O8 and KMnO4 as oxidants, respectively. The materials are characterized to confirm their optical, morphological, crystalline, chemical, and elemental properties. The nanocomposite exhibits superior optical properties compared to POCA. The promising optical characteristics make the nanocomposite an attractive candidate for light-sensing applications. Through electrical estimation, the nanocomposite photodetector displays the highest sensitivity between 340 and 440 nm, with Jph (current density) of 0.14 and 0.13 mA cm−2, correspondingly, and an estimated photon number of 7.461021 and 6.93 × 1021 photons/s, respectively. At 340 and 440 nm, the calculated photoresponsivity (R) values are 0.73 and 0.64 mA W−1, respectively, while the estimated detectivity (D) values are 1.64 × 108 and 1.45 × 108 Jones, respectively. These promising results indicate that the fabricated photodetector can soon potentially estimate light wavelengths and photon numbers in various industrial applications.