Abstract. Variational geometries describing corrugated graphene sheets are proposed. The isothermal thermomechanical properties of these sheets are described by a 2-dimensional Weyl space. The equation that couples the Weyl geometry with isothermal distributions of the temperature of graphene sheets, is formulated. This material space is observed in a 3-dimensional orthogonal configurational point space as regular surfaces which are endowed with a thermal state vector field fulfilling the isothermal thermal state equation. It enables to introduce a non-topological dimensionless thermal shape parameter of non-developable graphene sheets. The properties of the congruence of lines generated by the thermal state vector field are discussed.