“…Over the last decades, the focus of computational metaphor identification has shifted from rule-based (Fass, 1991) and knowledge-based approaches (Krishnakumaran and Zhu, 2007;Wilks et al, 2013) to statistical and machine learning approaches including supervised (Gedigian et al, 2006;Turney et al, 2011;Dunn, 2013a,b;Tsvetkov et al, 2013;Hovy et al, 2013;Mohler et al, 2013;Klebanov et al, 2014;Bracewell et al, 2014;Jang et al, 2015;Gargett and Barnden, 2015;Rai et al, 2016;Köper and Schulte im Walde, 2017), semi-supervised (Birke and Sarkar, 2006;Zayed et al, 2018) and unsupervised methods (Shutova and Sun, 2013;Heintz et al, 2013;Strzalkowski et al, 2013). These approaches employed a variety of features to design their models.…”