The nickel catalysts derived from Cr‐doped LaNiO3 perovskite‐like precursors were characterized by X‐ray diffraction, high‐resolution transmission electron microscopy, temperature‐programmed oxidation, temperature‐programmed reduction, and X‐ray photoelectron spectroscopy. Their catalytic performance in CO2 reforming of methane under microwave irradiation was investigated. It was found that the structure and morphology of the oxide composites in this research were influenced by the ratio of Ni and Cr, and the mismatch of La3+, Ni3+, and Cr3+ may cause phase segregation. The catalytic performance of the Ni catalysts is dependent on the oxygen mobility of the perovskite oxide matrix, the content of the reduced Ni0, and the content of the remaining perovskite structure. The mobile oxygen in the perovskite matrix in the catalyst may enhance the conversion of CO2 during the reaction.