This study proposes a deep-learning-based system for detecting and classifying Scirtothrips dorsalis Hood, a highly invasive insect pest that causes significant economic losses to fruit crops worldwide. The system uses yellow sticky traps and a deep learning model to detect the presence of thrips in real time, allowing farmers to take prompt action to prevent the spread of the pest. To achieve this, several deep learning models are evaluated, including YOLOv5, Faster R-CNN, SSD MobileNetV2, and EfficientDet-D0. EfficientDet-D0 was integrated into the proposed smartphone application for mobility and usage in the absence of Internet coverage because of its smaller model size, fast inference time, and reasonable performance on the relevant dataset. This model was tested on two datasets, in which thrips and non-thrips insects were captured under different lighting conditions. The system installation took up 13.5 MB of the device’s internal memory and achieved an inference time of 76 ms with an accuracy of 93.3%. Additionally, this study investigated the impact of lighting conditions on the performance of the model, which led to the development of a transmittance lighting setup to improve the accuracy of the detection system. The proposed system is a cost-effective and efficient alternative to traditional detection methods and provides significant benefits to fruit farmers and the related ecosystem.