Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To gain insights into the diversity of Pseudomonas syringae sensu lato affecting sweet cherry in California, we sequenced and analyzed the phylogenomic and genomic architecture of 86 fluorescent pseudomonads isolated from symptomatic and asymptomatic cherry tissues. Fifty-eight isolates were phylogenetically placed within the P. syringae species complex and taxonomically classified into five genomospecies: P. syringae pv. syringae , P. syringae , Pseudomonas cerasi , Pseudomonas viridiflava , and A . We annotated components of the type III secretion system and phytotoxin-encoding genes and correlated the data with pathogenicity phenotypes. Intact probable regulatory protein HrpR was annotated in the genomic sequences of all isolates of P. syringae pv. syringae , P. syringae , P. cerasi , and A . Isolates of P. viridiflava had atypical probable regulatory protein HrpR. Syringomycin and syringopeptin-encoding genes were annotated in isolates of all genomospecies except for A and P. viridiflava . All isolates of P. syringae pv. syringae caused cankers, leaf spots, and fruit lesions in the field. In contrast, all isolates of P. syringae and P. cerasi and some isolates of P. viridiflava caused only cankers. Isolates of genomospecies A could not cause any symptoms suggesting phytotoxins are essential for pathogenicity. On detached immature cherry fruit pathogenicity assays, isolates of all five genomospecies produced symptoms (black–dark brown lesions). However, symptoms of isolates of genomospecies A were significantly ( P < 0.01) less severe than those of other genomospecies. We also mined for genes conferring resistance to copper and kasugamycin and correlated these data with in vitro antibiotic sensitivity tests. IMPORTANCE Comprehensive identification of phytopathogens and an in-depth understanding of their genomic architecture, particularly virulence determinants and antibiotic-resistant genes, are critical for several practical reasons. These include disease diagnosis, improved knowledge of disease epidemiology, pathogen diversity, and determination of the best possible management strategies. In this study, we provide the first report of the presence and pathogenicity of genomospecies Pseudomonas cerasi and Pseudomonas viridiflava in California sweet cherry. More importantly, we report a relatively high level of resistance to copper among the population of Pseudomonas syringae pv. syringae (47.5%). This implies copper cannot be effectively used to control bacterial blast and bacterial canker of sweet cherries. On the other hand, no isolates were resistant to kasugamycin, an indication that kasugamycin could be effectively used for the control of bacterial blast and bacterial canker. Our findings are important to improve the management of bacterial blast and bacterial canker of sweet cherries in California.
To gain insights into the diversity of Pseudomonas syringae sensu lato affecting sweet cherry in California, we sequenced and analyzed the phylogenomic and genomic architecture of 86 fluorescent pseudomonads isolated from symptomatic and asymptomatic cherry tissues. Fifty-eight isolates were phylogenetically placed within the P. syringae species complex and taxonomically classified into five genomospecies: P. syringae pv. syringae , P. syringae , Pseudomonas cerasi , Pseudomonas viridiflava , and A . We annotated components of the type III secretion system and phytotoxin-encoding genes and correlated the data with pathogenicity phenotypes. Intact probable regulatory protein HrpR was annotated in the genomic sequences of all isolates of P. syringae pv. syringae , P. syringae , P. cerasi , and A . Isolates of P. viridiflava had atypical probable regulatory protein HrpR. Syringomycin and syringopeptin-encoding genes were annotated in isolates of all genomospecies except for A and P. viridiflava . All isolates of P. syringae pv. syringae caused cankers, leaf spots, and fruit lesions in the field. In contrast, all isolates of P. syringae and P. cerasi and some isolates of P. viridiflava caused only cankers. Isolates of genomospecies A could not cause any symptoms suggesting phytotoxins are essential for pathogenicity. On detached immature cherry fruit pathogenicity assays, isolates of all five genomospecies produced symptoms (black–dark brown lesions). However, symptoms of isolates of genomospecies A were significantly ( P < 0.01) less severe than those of other genomospecies. We also mined for genes conferring resistance to copper and kasugamycin and correlated these data with in vitro antibiotic sensitivity tests. IMPORTANCE Comprehensive identification of phytopathogens and an in-depth understanding of their genomic architecture, particularly virulence determinants and antibiotic-resistant genes, are critical for several practical reasons. These include disease diagnosis, improved knowledge of disease epidemiology, pathogen diversity, and determination of the best possible management strategies. In this study, we provide the first report of the presence and pathogenicity of genomospecies Pseudomonas cerasi and Pseudomonas viridiflava in California sweet cherry. More importantly, we report a relatively high level of resistance to copper among the population of Pseudomonas syringae pv. syringae (47.5%). This implies copper cannot be effectively used to control bacterial blast and bacterial canker of sweet cherries. On the other hand, no isolates were resistant to kasugamycin, an indication that kasugamycin could be effectively used for the control of bacterial blast and bacterial canker. Our findings are important to improve the management of bacterial blast and bacterial canker of sweet cherries in California.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.