Across various animal groups, adaptation to the extreme conditions of cave environments has resulted in 15 convergent evolution of morphological, physiological, and behavioral traits. We document a Neotropical cave fish system with ample potential to study questions related to convergent adaptation to cave environments at the population level. In the karstic region of the Andes of Santander, Colombia, cave-dwelling catfishes in the genus Trichomycterus exhibit variable levels of reduction of eyes and body pigmentation relative to surface congeners. We tested whether cave-dwelling, eye reduced, depigmented Trichomycterus from separate caves in Santander 20 were the result of a single event of cave colonization and subsequent dispersal, or of multiple colonizations to caves by surface ancestors followed by phenotypic convergence. Using mitochondrial DNA sequences to reconstruct phylogenetic relationships of Trichomycterus from Santander, we found that caves in this region have been colonized independently by two separate clades. Additional events of cave colonization -and possibly recolonization of surface streams-may have occurred in one of the clades, where surface and cave-dwelling 25 populations exhibit shallow mtDNA differentiation, suggesting recent divergence or divergence in the face of gene flow. We also identified various taxonomic challenges including both a considerable number of potentially undescribed species and likely problems with the circumscription of named taxa. The system appears especially promising for studies on a wide range of ecological and evolutionary questions. 30