Aim Dispersal barriers between areas within some regions have appeared and disappeared throughout evolutionary time. Here we describe the distributional patterns displayed by three taxa living in such kind of regions. These patterns can be better explained considering a reticulated rather than a hierarchically branched palaeogeography.
Location Western Mediterranean.
Methods The taxa studied are Misolampus (Coleoptera, Tenebrionidae), Tentyria (Coleoptera, Tenebrionidae) and Thorectes (Coleoptera, Geotrupidae). All them are flightless and show a high degree of endemicity. The individual pattern of area relationships was determined separately for each genus by Brooks Parsimony Analysis (BPA). A theoretical general area cladogram was constructed based on the palaeogeographical history of the region. Finally, the general area cladogram is reconciled with the individual ones.
Results The ancestor of Misolampus probably was North African. Land dispersal toward the Iberian Peninsula is proposed. Speciation within Iberia is related to specific vicariance events, and the presence of insular (Balearic Islands) populations is explained by sea‐surface or, more probably, human‐mediated dispersal. The ancestor of Tentyria was Iberic. The proposed hypothesis to explain the current species distribution mainly relies on the occurrence of specific vicariance events. However, the occurrence of some sea‐surface dispersal event is not discarded. Almost all possible vicariance events can be recognized in the first clade of the Thorectes genus. There is evidence for dispersal between Africa and Europe at different dates and in both directions. In spite of some uncertainties, the appearance of the second Thorectes clade can also be explained by the occurrence of specific historical events. An ancient dispersal toward the eastern Mediterranean and several dispersal events during the Messinian seem likely.
Main conclusions The same historical events have specific outcomes in every tree (even in every branch within a tree) depending on the ability for dispersal and speciation of each taxon. Connection‐disjunction cycles of dispersal barriers have acted as diversity producers.