Morphological disparity has increasingly been used as an alternative measure of biological diversity based on the shape features of organisms. In this study, we investigated the species diversity and morphological disparity of benthic Desmidiales in Central European peatland pools. The shape features of cells were determined using the 3-D elliptical Fourier analysis of their frontal and lateral views. The resulting morphospace was used to calculate the contributions of localities and species to the morphological variation. In addition, the disparity of samples and their average cell complexity (indicating intricacy of cell shapes) was evaluated. These data were related to species diversity data and to the abiotic factors. Species diversity was positively correlated with pH and conductivity. The low-pH localities generally supported a more variable species composition than did slightly acidic to neutral localities.Conversely, the total nitrogen concentrations of these areas negatively correlated with species diversity. Interestingly, partial morphological disparity (measuring the contribution of a sample to the overall morphological variation) did not correlate with species diversity. On the contrary, several mountain peat bog localities had high disparity values, irrespective of their rather low species diversity. In addition, several samples from minerotrophic fens with high diversity had average or low values of partial morphological disparity. These results indicate the relative importance of mountain peat bogs for the total morphological diversity of Desmidiales within the region that could not be ascertained solely from species diversity data. The inner morphological disparity of samples was highly correlated with their species diversity. Species of the genus Micrasterias, Hyalotheca dissiliens and Desmidium species had the highest partial morphological disparity, thus indicating their marginal position within the morphospace. Micrasterias and Euastrum species had the highest complexity values. The average cell complexity of individual samples did not correlate with their diversity or disparity; however, it was positively correlated with the levels of total nitrogen and phosphorus, and illustrates a pattern different from that arrived at by species diversity data.