We discuss geographical distribution and phylogeny of Dactylogyridea (Monogenea) parasitizing Cichlidae to elucidate their hosts' history. Although mesoparasitic Monogenea (Enterogyrus spp.) show typical vicariant distribution, ectoparasitic representatives from different continents are not considered sister taxa, hence their distribution cannot result from vicariance alone. Because of the close host-parasite relationship, this might indicate that present-day cichlid distribution may also reflect dispersal through coastal or brackish waters. Loss of ectoparasites during transoceanic migration, followed by lateral transfer from other fish families might explain extant host-parasite associations. Because of its mesoparasitic nature, hence not subject to salinity variations of the host's environment, Enterogyrus could have survived marine migrations, intolerable for ectoparasites. Host-switches and salinity transitions may be invoked to explain the pattern revealed by a preliminary morphological phylogeny of monogenean genera from Cichlidae and other selected Monogenea genera, rendering the parasite distribution explicable under both vicariance and dispersal. Testable hypotheses are put forward in this parasitological approach to cichlid biogeography. Along with more comprehensive in-depth morphological phylogeny, comparison with molecular data, clarifying dactylogyridean evolution on different continents and from various fish families, and providing temporal information on host-parasite history, are needed to discriminate between the possible scenarios.