The domesticated silkworm, Bombyx mori Linnaeus (Lepidoptera: Bombycidae), often poses a challenge in strain identification due to similarities in morphology and genetic background. In South Korea, around 40 silkworm strains are classified as premium, including 5 endemic tri-molting strains: Goryeosammyeon, Sammyeonhonghoeback, Hansammyeon, Sun7ho, and Sandongsammyeon. These strains have potential for breeding programs in response to emerging industry demands, necessitating a reliable strain identification method. In this study, we established a molecular diagnosis approach for these 5 strains. We selected 2–4 single-nucleotide polymorphisms (SNPs) for each strain from whole-genome sequences of 39 strains, encompassing 37 previously studied and 2 newly added. These SNPs were utilized to construct decision trees for each endemic strain identification. The SNPs can be used to distinguish each target strain from the 38 nontarget strains by the tetra-primer amplification refractory mutation system-polymerase chain reaction, with the exception of HMS which needs the addition of PCR-restriction fragment length polymorphism method at the final step. This decision tree-based method using genomic SNPs, coupled with the 2 typing methods, produced consistent and accurate results, providing 100% accuracy. Additionally, the significant number of remaining SNPs identified in this study could be valuable for future diagnosis of the other strains.