The geographical variation and domestication of tree species are an important part of the theory of forest introduction, and the tracing of the germplasm is the theoretical basis for the establishment of high‐quality plantations. Chinese pine (Pinus tabuliformis Carr.) is an important native timber tree species widely distributed in northern China, but it is unclear exactly where germplasm of the main Chinese pine plantation populations originated. Here, using two mtDNA markers, we analyzed 796 individuals representing 35 populations (matR marker), and 873 individuals representing 38 populations (nad5‐1 marker) of the major natural and artificial populations in northern China, respectively (Shanxi, Hebei and Liaoning provinces). The results confirmed that the core position of natural SX* populations (“*” means natural population) in the Chinese pine populations of northern China, the genetic diversity of HB and LN plantations was higher than that of natural SX* populations, and there was a large difference in genetic background within the groups of SX* and LN, HB showed the opposite. More importantly, we completed the “point by point” tracing of the HB and LN plantings. The results indicated that almost all HB populations originated from SX* (GDS*, ZTS*, GCS*, and THS*), which resulted in homogeneity of the genetic background of HB populations. Most of germplasm of the LN plantations originated from LN* (ZJS* and WF*), and the other part originated from GDS* (SX*), resulting in the large differences in the genetic background within the LN group. Our results provided a reliable theoretical basis for the scientific allocation, management, and utilization of Chinese pine populations in northern China, and for promoting the high‐quality establishment of Chinese pine plantations.