Fluid flow phenomenon in Centrifugal Flow (CF) tundish is investigated using water modeling and numerical simulation techniques. The effect of the dam spacing and rotation speed on the flow structure has been analyzed in detail. Results reveal that the bias flow, originating from the rotary outflow, leads to the formation of transversal circulation behind the dam. Such transversal flow can effectively diminish the conventional dead volume. Meanwhile, small dam spacing helps to produce a large-scale transversal circulation, and thus the prolonged flow path and relatively low velocity results in an increased plug volume. With the increase of dam spacing, the intensity of transversal circulation decreases and the increased fluid velocity causes a minished plug volume. The highest ratio of plug to dead volume is obtained under the dam spacing when transversal circulation is strongest. Furthermore, under lower magnetic intensities, the weaker fluid momentum leads to relatively large dead volume. With the increasing of magnetic intensity, the fluid mixing becomes better. However, much larger magnetic intensity will lead to decreased ratio of plug to dead volume. Therefore, a medium rotation speed (around 30 r/min) should be recommended.