The objective of this study is to identify the extent of stiffness, adhesiveness, and thixotropic character of a three-dimensional gel network of a 1% diclofenac sodium topical gel formulation in the presence and absence of colloidal silicon dioxide (CSD) and assess its ease of application and adhesiveness using both objective and subjective analysis. The 1% diclofenac gel was mixed with different amounts of CSD (e.g., 0.5, 1, 2, 3, and 5% w/w) and allowed to equilibrate prior to testing. The texture analyzer in combination with a cone-cap assembly was used to objectively investigate the changes in spreadability and adhesiveness of the gel system before and after addition of CSD. Results indicate that an increase in pliability and adhesiveness at levels ≥2 to ≤5% w/w of CSD dispersed in the gel ensues. For subjective analysis, gels with (2% w/w) CSD and in the absence of CSD were uniformly applied to a 20-cm(2) (5 cm × 4 cm) surface area on the forearms of healthy volunteers and vehicle preferences by the volunteers regarding ease of application, durability on the skin, compliance, and feelings concerning its textural properties were assessed. It appears that changes in the gel formulation with the addition of CSD enhance gel viscosity and bonding to the skin. Results further show that changes in physical and rheological characteristics of gel containing 2% w/w CSD did not significantly change subject preferences for the gel preparations. These findings may help formulators to have additional options to develop more robust and cost-effective formulations.