The cytolytic protein Eiseniapore (38 kDa) from coelomic fluid of the earthworm Eisenia fetida functionally requires sphingomyelin as revealed by using mammalian erythrocytes and phospholipid vesicles. The effects of ions, glycoproteins and phospholipids were investigated for the two-step Eiseniapore action mode, binding and pore formation in different assays. Eiseniapore lysis is activated by thiol groups but inhibited by metal ions. Eiseniapore binding to target membranes is inhibited by Eiseniapore-regulating factor, vitronectin, heparin and lysophosphatidylcholine. Ca 2+ and Mg 2+ were found to be not necessary for membrane binding or lytic activity. Sphingomyelin was essential for Eiseniapore-induced leakage of liposomes. We describe a cytolytic protein/toxin in Eiseniapore which differs from the established classification; it can be activated by thiol groups and is inhibited by sphingomyelin. Electron microscopy of erythrocyte membranes confirmed ring-shaped structures (pores) with a central channel with outer (10 nm) and inner (3 nm) diameters as shown previously [Lange, S., Nu Èûler, F., Kauschke, E., Lutsch, G., Cooper, E.L. & Herrmann, A. (1997) J. Biol. Chem. 272, 20 884±20 892] using artificial membranes. Functional evidence of pore formation by Eiseniapore was revealed as protection of lysis by carbohydrates occurred at an effective diameter above 3 nm. From these results, we suggest a plausible explanation for the mechanism by which components of the earthworm's immune system destroy non-self components.