Proposing an architecture that efficiently compensates for the inefficiencies of physical hardware with extra resources is one of the key issues in quantum computer design. Although the demonstration of quantum systems has been limited to some dozen qubits, scaling the current small-sized lab quantum systems to largescale quantum systems that are capable of solving meaningful practical problems can be the main goal of much research. Focusing on this issue, in this article a scalable architecture for quantum information processors, called SAQIP, is proposed. Moreover, a flow is presented to map and schedule a quantum circuit on this architecture. Experimental results show that the proposed architecture and design flow decrease the average latency and the average area of quantum circuits by about 81% and 11%, respectively, for the attempted benchmarks.