In this study, we investigated the
molecular adhesion between the
major constituents of cartilage extracellular matrix, namely, the
highly negatively charged proteoglycan aggrecan and the type II/IX/XI
fibrillar collagen network, in simulated physiological conditions.
Colloidal force spectroscopy was applied to measure the maximum adhesion
force and total adhesion energy between aggrecan end-attached spherical
tips (end radius R ≈ 2.5 μm) and trypsin-treated
cartilage disks with undamaged collagen networks. Studies were carried
out in various aqueous solutions to reveal the physical factors that
govern aggrecan–collagen adhesion. Increasing both ionic strength
and [Ca2+] significantly increased adhesion, highlighting
the importance of electrostatic repulsion and Ca2+-mediated
ion bridging effects. In addition, we probed how partial enzymatic
degradation of the collagen network, which simulates osteoarthritic
conditions, affects the aggrecan–collagen interactions. Interestingly,
we found a significant increase in aggrecan–collagen adhesion
even when there were no detectable changes at the macro- or microscales.
It is hypothesized that the aggrecan–collagen adhesion, together
with aggrecan–aggrecan self-adhesion, works synergistically
to determine the local molecular deformability and energy dissipation
of the cartilage matrix, in turn, affecting its macroscopic tissue
properties.