Abstract. In mammography, the reduction of scattered X-rays is vital due to the low contrast or small dimension of the details that are searched for. The typical method of doing so in current conventional mammography is the anti-scatter grid. The disadvantage of this method is the absorption of a proportion of the primary beam and therefore an increase in dose is required to compensate for the loss of counts. An alternative method is proposed, using quasi-monochromatic beams and a pixellated spectroscopic detector. As Compton-scattered X-rays lose energy in the scattering process, they are detected at a lower energy in the spectrum. Therefore the spectrum can be windowed around the monochromatic energy peak, removing the scattered Xrays from the image. The work presented here shows contrast improvement of up to 50 % and contrast to noise ratio improvements of around 20 % for scatter free imaging in comparison to full spectrum imaging. Contrast improvements of around 45 % were found when comparing scatter free images to conventional polychromatic imaging for both the low contrast test object and the Rachel anthropomorphic breast phantom.