2020
DOI: 10.1007/978-981-15-3270-2_34
|View full text |Cite
|
Sign up to set email alerts
|

Physical Fatigue Prediction Based on Heart Rate Variability (HRV) Features in Time and Frequency Domains Using Artificial Neural Networks Model During Exercise

Abstract: Awareness on fatigue level is important for people in order to understand their physiology in daily activities. This situation become more critical when involving physical exercise and reach the maximum threshold fatigue which can lead to injury. Additionally, sedentary people become the most group who is difficult to understand and know their fatigue condition based on feeling compared to the recreational exercise people and sports athlete. Therefore, this study is aims to help sedentary to predict the level … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
3

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(5 citation statements)
references
References 10 publications
0
2
0
3
Order By: Relevance
“…However, a major limitation of their study was that instead of using RPE as a reference measure for accuracy calculations, they used the ratio of instantaneous heart rate to maximum heart rate. Although, this ratio correlates well with the RPE scores (Manzi et al 2010), it cannot entirely substitute RPE, which is considered as a gold standard for physical exertion monitoring (Ahmad et al 2020).…”
Section: Research Rationale and Objectivementioning
confidence: 93%
See 1 more Smart Citation
“…However, a major limitation of their study was that instead of using RPE as a reference measure for accuracy calculations, they used the ratio of instantaneous heart rate to maximum heart rate. Although, this ratio correlates well with the RPE scores (Manzi et al 2010), it cannot entirely substitute RPE, which is considered as a gold standard for physical exertion monitoring (Ahmad et al 2020).…”
Section: Research Rationale and Objectivementioning
confidence: 93%
“…Their study concluded that time-domain features had higher capability to classify these phases. Interestingly, Ahmad et al (2020) used multiple HRV features to predict exertion during running exercise. These authors achieved a maximum accuracy of 81%.…”
Section: Research Rationale and Objectivementioning
confidence: 99%
“…Цікавим є також мультипараметричний підхід до дослідження втоми. Деякі дослідники комбінують серцеві сигнали з іншими біометричними показниками, наприклад, з даними електроенцефалограми (EEG) чи електроміограми (EMG), що може покращити точність виявлення втоми [6][7][8].…”
Section: Review Of Modern Approaches To Determining Physical Fatigue ...unclassified
“…Автори в роботі [8] проводили дослідження рівня втоми осіб, які ведуть сидячий спосіб життя, на основі особливостей HRV за допомогою штучних нейронних мереж. Дослідження включало 30 молодих чоловіків, які добровільно взяли участь в дослідженні.…”
unclassified
“…Un método habitual es medir la intensidad cardiovascular mediante monitores de frecuencia cardíaca, esta actividad durante el ejercicio físico es una interesante herramienta no invasiva para monitorizar la respuesta cardiovascular al ejercicio, sin embargo, este método no proporciona una estimación de la carga en partes específicas del cuerpo (Hernando et al, 2018). Además, el uso de la RPE es un método que no debe ser sustituido por completo como referencia y siempre debe estar presente en este tipo de evaluaciones, ya que se considera un estándar de oro para la monitorización del esfuerzo físico (Ahmad et al, 2020).…”
Section: ¿Qué Debemos Considerar?unclassified