This paper investigates the performance of dual-hop unmanned aerial vehicle (UAV)-assisted communication channels, employing a decode-and-forward (DF) relay architecture. The system leverages terahertz (THz) communication for the primary hop and visible light communication (VLC) for the secondary hop. We conduct an in-depth analysis by deriving closed-form expressions for the end-to-end (E2E) bit error rate (BER). Additionally, we use a Monte Carlo simulation approach to generate best-fitting curves, validating our analytical expressions. A performance evaluation through BER and outage probability metrics demonstrates the effectiveness of the proposed system. Specifically, our results indicate that the proposed system outperforms Free-Space Optics (FSO)-VLC and Radio-Frequency (RF)-VLC at a higher signal-to-noise ratio (SNR). The results of this study provide valuable insights into the feasibility and limitations of UAV-assisted THz-VLC communication systems.