Cognitive heterogeneous cellular networks (CHCNs) are emerging as a promising approach to next-generation wireless communications owing to their seamless coverage and high network throughput. In this paper, we describe our reliance on multi-antenna technology and a secrecy transmission protocol to ensure the reliability and security of downlink underlay CHCNs. First, we introduce a two-tier CHCN model using a stochastic geometry framework, and derive the probability distribution of the indicator function for a secrecy transmission scheme. We then investigate the connection outage probability, secrecy outage probability (SOP), and transmission SOP of both primary and cognitive users under a secrecy guard scheme and a threshold-based scheme. Furthermore, we reveal some insights into the secrecy performance by properly setting the predetermined access threshold and the radius of detection region for the secrecy transmission scheme. Finally, simulation results are provided to show the influence of the antenna system, eavesdropper density, predetermined access threshold, and radius of the detection region on the reliability and security performance of a CHCN.