A simple room‐temperature process of depositing MXene on a III‐V structure with embedded 2D electron gas (2DEG) is used, which results in a large area, 2×104µm2$2 \times {10^4}\mu {m^2}$, photodetector (PD) device that greatly outperforms vacuum deposited Ti/Au metal‐semiconductor‐metal (MSM) PD's. By co‐optimizing properties of 2D MXene contacts and the III‐V material heterojunctions, this device sets new operating records with responsivity up to 1.04 A W‐1 at low optical powers, corresponding to >230% internal quantum efficiency, dark current of 50 fAµm2$\frac{{fA}}{{\mu {m^2}}}$, >105.6‐dB dynamic range, and 25–150 ps response time, which improves the previous MXene‐Semiconductor‐MXene responsivity by >2.7 times and is 7 × 103 –−106 times faster compared to other MXene‐based PDs. This is achieved by enhancing the Schottky barrier height by forming a Van der Waals (vdW) heterojunction between a wide bandgap AlGaAs surface layer and spin coated Ti3C2Tz electrodes. A layered architecture transports the optically generated electrons to a 2DEG channel at the GaAs/AlGaAs heterointerface, where they are rapidly collected. The landscaped electric field pushes the slow holes to an underlying low temperature‐grown GaAs (LT‐GaAs) region where they recombine. The proposed Schottky‐2DEG Photoconductor‐Schottky model for device operation shows how this device circumvents the canonical limitations of gain‐bandwidth product, and carrier transit time, while replacing the need for vacuum deposition of gold or other precious metals.